top of page
IMG_5171_edited.jpg

Publications

​

 

Munz, M.*, Bharioke, A.*, Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T.M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., et al. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell 2022.08.31.506080. https://doi.org/10.1016/j.cell.2023.03.025 .

 

Bharioke, A.*, Munz, M.*, Brignall, A.*, Kosche, G., Eizinger, M.F., Ledergerber, N., Hillier, D., Gross-Scherf, B., Conzelmann, K.-K., Macé, E., et al. (2022). General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 110, 2024-2040.e10. https://doi.org/10.1016/j.neuron.2022.03.032.

 

Munz, M.*, Gobert, D.*, Schohl, A., Poquérusse, J., Podgorski, K., Spratt, P., and Ruthazer, E.S. (2014). Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344, 904–909. https://doi.org/10.1126/science.1251593.

 

Munz, M., Brecht, M., and Wolfe, J. (2010). Active touch during shrew prey capture. Front. Behav. Neurosci. 4, 191. https://doi.org/10.3389/fnbeh.2010.00191.

​

Kutsarova E., Schohl A., Munz M., Wang A., Zhang Y., Bilash O., and Ruthazer E.S.. 2023. ‘BDNF Signaling in Correlation-Dependent Structural Plasticity in the Developing Visual System’. PLOS Biology 21 (4): e3002070. https://doi.org/10.1371/journal.pbio.3002070.

 

Rahman, T.N., Munz, M., Kutsarova, E., Bilash, O.M., and Ruthazer, E.S. (2020). Stentian structural plasticity in the developing visual system. Proc. Natl. Acad. Sci. U. S. A. 117, 10636–10638. https://doi.org/10.1073/pnas.2001107117.

​

Cowan, C.S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum, D., Hou, Y., Munz, M., Rodrigues, T.M., Krol, J., Szikra, T., et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 182, 1623-1640.e34. https://doi.org/10.1016/j.cell.2020.08.013.

 

Schubert, R., Trenholm, S., Balint, K., Kosche, G., Cowan, C.S., Mohr, M.A., Munz, M., Martinez-Martin, D., Fläschner, G., Newton, R., et al. (2018). Virus stamping for targeted single-cell infection in vitro and in vivo. Nat. Biotechnol. 36, 81–88. https://doi.org/10.1038/nbt.4034.

 

Coupé, P., Munz, M., Manjón, J.V., Ruthazer, E.S., and Collins, D.L. (2012). A CANDLE for a deeper in vivo insight. Med. Image Anal. 16, 849–864. https://doi.org/10.1016/j.media.2012.01.002

 

 

Reviews and Book Chapters:

 

Munz, M., Kutsarova, E., and Ruthazer, E.S. (2020). Chapter 2 - In vivo imaging of synaptogenesis. In Synapse Development and Maturation, J. Rubenstein, P. Rakic, B. Chen, K.Y. Kwan, H.T. Cline, and J. Cardin, eds. (Academic Press), pp. 33–53.

 

​Kutsarova, E., Munz, M., and Ruthazer, E.S. (2017). Rules for Shaping Neural Connections in the Developing Brain. Front. Neural Circuits 10.

 

Munz, M., Gobert, D., Higenell, V., Horn, M.R.V., Glasgow, S., Schohl, A., and Ruthazer, E.S. (2014). Using Two–Photon Intravital Imaging to Study Developmental Plasticity of Neural Circuits. Microsc. Microanal. 20, 1342–1343. https://doi.org/10.1017/S1431927614008447.

 

Munz, M., and Ruthazer, E.S. (2013). Comprehensive Developmental Neuroscience: Cellular Migration and Formation of Neuronal Connections: Chapter 28. In Vivo Imaging of Synaptogenesis (Elsevier Inc. Chapters).

 

Brecht, M., Naumann, R., Anjum, F., Wolfe, J., Munz, M., Mende, C., and Roth-Alpermann, C. (2011). The neurobiology of Etruscan shrew active touch. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 3026–3036. https://doi.org/10.1098/rstb.2011.0160.

 

 

Five most important publications with short description:

 

​Munz, M.*, Bharioke, A.*, Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T.M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., et al. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell 2022.08.31.506080. https://doi.org/10.1016/j.cell.2023.03.025 .

​

Short description:

Using in vivo imaging of embryonic cortex, we show that layer 5 pyramidal neurons form two distinct multi-layered, active circuit motifs during embryonic development that switch after E15.5, the first of which constitutes a new circuit motif at the inception of the neocortex. Furthermore, the perturbation of autism-associated genes interferes with the switch in both circuit organization and activity.

​

 

M. Munz*, D. Gobert*, A. Schohl, J. Poquérusse, K. Podgorski, P. Spratt, E. S. Ruthazer, Rapid Hebbian axonal remodeling mediated by visual stimulation. Science. 344, 904–909 (2014). https://doi.org/10.1126/science.1251593.

​

Short description:

Hebbian plasticity is thought to drive circuit remodeling in the central nervous system. We developed an experimental approach to watch Hebbian plasticity of neuronal axons in vivo at high temporal resolution. Although the key predictions of Hebbian developmental plasticity were upheld, we found that changes in axonal growth due to Hebbian plasticity are ver fast and can be observed 10 minutes after the stimuli.

 

 

Bharioke*, M. Munz*, A. Brignall*, G. Kosche, M. Eizinger, N. Ledergerber, D. Hillier, B. Gross-Scherf, K. Conzelmann, E. Macé, B. Roska, General anesthesia globally synchronizes activity selectively in layer 5 cortical neurons. Neuron. https://doi.org/10.1016/j.neuron.2022.03.032

​

Short description:

All general anesthesia, by definition, leads to the loss of consciousness. We found that activity of layer 5 pyramidal neurons synchronizes globally under different anesthetics, while other cortical cell types show no consistent increase in synchrony. Further, we showed changes in layer 5 synchrony coincide with the loss and recovery of consciousness and that basal, but not apical, layer 5 dendrites are in synchrony with somas.

 

​

Cowan, C.S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum, D., Hou, Y., Munz, M., Rodrigues, T.M., Krol, J., Szikra, T., et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell. https://doi.org/10.1016/j.cell.2020.08.013

​

Short description:

We generated light-sensitive, multilayered human retinal organoids with functional synapses and performed single cell sequencing from both light-responsive human retinas and retinal organoids. We found that organoid cell types converge to adult peripheral retinal cell types and retinal diseases can be linked to human retinal and retinal organoid cell types.

​

​

Munz, M., Brecht, M., and Wolfe, J. (2010). Active touch during shrew prey capture. Front. Behav. Neurosci. 4, 191. https://doi.org/10.3389/fnbeh.2010.00191.

​

Short description:

How does the Etruscan shrew, which is the smallest mammal, hunt crickets? We used very small, light reflective tags and high-speed videography to track whisker motion during cricket hunting and capture. We showed that Etruscan shrews actively whisk at ~14 Hz while searching. Upon contacting the cricket, whisking amplitude decreases and shrews protracted their whiskers as they begin to hunt the cricket.

bottom of page